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SOLUTION OF INVERSE PROBLEM OF
SOLIDIFICATION OF A CYLINDRICAL INGOT

E. S. Zal'tsman and A. A. Kobyshev UDC 536.24

An inverse problem of heat conduction that involves determination of the density of boundary heat flux
providing a prescribed velocity of solidification front motion is solved by an integral method.

A Mathematical Model of Cylindrical Ingot Solidification. The solidification of a cylindrical ingot, a siagram
of which is given in Fig. 1, is analyzed in a one-dimensional formulation. It is assumed that at the initial instant
the entire cylindrical region is in a liquid state at the melting point Ty and during solidification a liquid phasc is
maintained at this temperature 7 (r, {) = Tpn. An unknown time-variable heat flux with a density ¢ () that provides
the prescribed velocity £'(1) of motion of the phase interface r = () iaside the ingot is removed through the
boundary surface r = R. The thermophysical properties of the solid phase of the ingot are assumed to be constant.

Under the conditions mentioned, the temperature field in a cylindrical laver of solidified maternial is
described by the cquation of nonstationary heat conduction
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Analysis of regorous mathematical model (1)-(4) is difficult, due to its nonlincarity. Morcover, a strict
solution in the cases when it can be obtained in the form of an infinite scries is unsuitable for studying the
considered physical process. By virtue of this we use an integral method |1} which allows us to find in closed
analytical form a solution of (1)-{4) that is approximatc but satisfactory from an engincering point of view.
Averaging Eq. (1) within the fimits from r = R — £() to r = R and allowing for conditions (2)-(4), we obtain the
following integral of hcat balance
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Fig. 1. Diagram of cvlindrical ingot for internal problem of solidification.

In solving heat-conduction problems by the integral method once must assign a temperature profile. In [1]
the question cf an expedicni choice >f a tcmperature profile in solving problems of heat conduction in different
regions. In particular, it is shown that in a region with cylindrical symmetry it has the form To(r, ) = Py (r) In (0,
where P,(r) is a polynomial in r with coefficients dependent on . In just this way the temperature profile is
presented in {2 ], thus leading to a solution containing a singularity at £() = R. On the other hand, it is casily seen
that the following function satisfies Eq. (1)

z
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5 =, — Ei | = =~ 7
Ty(r,t)y= A+ 8B Ei [ 4“2!) . (7

where A and B are arbitrary constants;
“ t’,’_t hd +1 Zn
. n

Ei(-z) =] — dt c lnz+§l( D™ T (8)

C =0.57721566... is the Euler constant.

It follows from (7) that if we restrict ourselves to the first n terms of expansion (8), we obtain an
approximate solution of Eq. (1) in the form Ty(r, 1) = P,l(rz) +(Cln rz, where P,,(rz) is a polynomial in  with
coefficients dependent on . In presenting the temperature profile in such a form, we require that the unknown
solution satisfy the averaged cquation, i.c., the integral of heat balance (1), rather than heat-conduction equation
(1). Then the initial heat-conduction equation will be satisfied on the average.

Thus, we present the temperature profile in the form

Ty(ri ) = A, (1) + Ay (1) P+ Ay () In s 9)

To find functions A;(#) it is necessary to asign three boundary conditions. [n the inverse problem considered herc
boundary conditions (2)-(4) serve as these conditions, and the integral of heat balance (5) is used to obtain a
first-order differential equation with respect to ¢(1). In the case of the direct problem of cylindrical ingot
solidification under the effect of the prescribed heat flux ¢ (1) condition (3) should be replaced by another one not
involving & (0 since the coefficients A;(n) will contain §' and the integral of heat balance (5) &', while there is only
one initial condition for £(n: £(0) = 0. In [2] this condition is obtained by integrating (2) with respect to t:

aT, d& 9T,

: =R — (10)
ar dt+al at r=R-¢

and eliminating &' from (3) by (10):
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Eliminating finally a75/4dr from (11) by Eq. (1), we have

aT\: L1 a [ Ty
o) o T wlra) A r=rR-t =

cy 7 ar

Expression (12) is a third necessary condition, which is used instcad by (3).
Solution and Analysis of Results. Using conditions (2) and (4) we find the cocfficients A; () and Az(D:

R 22 2 2 (2

Ay (D) =Ty, +u—"zln (R=85"+ R In(R-—8 = R=5"14,(1: (13)
Ry 2 . .
15 (1) = u, R A5 (D), (14)
and the temperature profile
R ‘R oy 2 [ R \ 2

o= d, (R=s 2 — ¢ I Ro6tl. (15
TZ(r")—Tph+_H2|n( - ) +LR ln( - ) +r - (R=87 4. (15)

The cocefficient A>(n can be found by two wavs: from condition (3) when solving the inverse problem and from
condition (12) when solving both the direct and inverse problems.
From condition (3) we find

L R-§E - Ry (16)
O =" R -HE

which leads to a temperature profile of the form

lool (R = &)E = Rgl Ir = (R = &) .

Tz(ryl)szh+ QAZ(?R—E)E

R(R =) IRpslE —(R=§)g¢] (R-¢ a7
2, 2R -5 ") ‘
The employment of condition (12) gives
:1+:2+(R—.§ VXZL(22‘+;27 (18)
Ay (1) = - - .
where
Zl :R(.‘zq (2R""E)£t :ZzlzL(R“s)‘-. :3:M2('2(2R"'1‘;.)LE~ (lg)

Substituting (18) into (15}, we obtain an expression for the temperature profile that is suitable for solving direct
and inverse problems of cylindrical ingot solidification.

It should be noted that the choice of a temperature profile in the form of (9) leads to expression (135},
where A>(0) is found from (16) or (18), which in contrast to [3] has no singularity at £(f) = R. Actually, when
E(t) = R, it follows from (15) that temperature distribution in a solidified ingot will have the form
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Tz(r,l)=Tph—gﬂ‘(2%r2, 0<r<R. (20

Two approximate solutions of both the direct and inverse problems of heat conduction are suggested in the
paper.
The solution at Az(f) = 0, as follows from (9), corresponds to a simplified model when in expansion (8)

the two first terms are used: —Ei(—z) = =C — In z.
It follws from (16) that A,(1) = 0, if

paL (R ~ - Ry =0. (20

Srr
e

)

Integrating (21) at £(0) = 0 we obtain a rclation for determination of the solidification process

sn=r-y/

On the other hand, in the case of the inverse problem, Eq. (21) is used to determine the unknown flow

) 9 { | .
R™ - 2R [ qayde] . (22)
P2l )

Pk -
c/(t)=~R—(R—¢); .

(23)
As particular cases of the solution of the simplificd model suggested in the paper approximate solutions of
the direct problem of cvlindrical ingot solidification that are known from literature, are obtained under boundary
conditions of the first and third kinds.
From «15) at A3(0) = 0 we obtain

Ry (R—-& 74
T,(r,t)=T +-—-—( ) (24)
2 ph " 21,

Hence it follows that to maintain a constant temperature T5(R, 1) = T on the surface r = R the flux ¢(#) should be
equal to

AT = T (25)
q (’) - R _E -
In e
Substituting this value of ¢(n into (21), we have
AT~ T..)
pol (R =8 E - -2 — g (20)
In R-¢
R
or
pal R-Z (27)
dt = v—————— (R - &) In - dE .
‘ Z(Ts_th)( =) R
Integrating (27) at £(0) = 0, we find
2 : 2 2
R I r r r
(T =Ty |4 R 2R" R

where rf= R — &,
Formula (28) coincides with the known Leibenson solution obtained by another method under boundary
conditions of the first kind {4].
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The solution of Seban and London for boundary conditions of the third kind [5] is also obtained from the
simplified model. Actually, so that the condition

aT,
At =alTy (R = Tyl,

r=

is satisfied at the boundary, one should assign the flux ¢(¢ in the form

a(T,, - T.)
ph
l——len R

Substitution of (29) into (21) leads to the following differential equation for the dependence of the phase interface
motion on time

pol 1= 2 B2 *') (R=§E =aR (Ty = Ty . 30)
or

3 sz aR R = &) - (31)

(fl—aR(Tnh_Tm\) [l —_Xz_ln R ] (R_$)(jg,

Integrating (31 at £ =0, we obtain

[ Rl 1 A / r2 rz re
,z_.____ﬁl_ﬁ___ - l——f2 +—%ln—'. (32)

Ay(Ton — Ty) | |4 2aR R 2R R

Formulas (22), (28), and (32) allow one to determine time tf of the completion of the process of round

ingot solidification at £(f) = R. From (22), in particular, we have boundary conditions of the second kind :
1. If

o= (R (33)
R \vi

then £ = KVi. This parabolic relationship between the solidified layer thickness and time is shown as the law of
the square root and is widely employed in studies of the process of ingot solification [6 . The process of solidification
is completed at = R/ K2

2. If gt = const, then

2 2Ry ‘
Er:R—\/R——————r 34)
s (N ( ool ) (34)
and the solidification process stops at
_ feak (35)
f = Vi

The accuracy of the solution of the approximate model can be estimated from the condition of using the
first two terms in expansion (8): —Ei(—z) = —C — In z. Since (8) is an alternating series, the error of this
substitution does not exceed z = r2/4a21 = Fo™ . Conscquently, the error of the simplified model will be of the
order of Fo™'.
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We consider a more strict solution of the problem that is obtained using the first three terms in expansion
(8): —Ei(—z) = —C — In z + z, substituting (15) and (6) and allowing for the three coefficients A;(2) (i =1, 2, 3).
Performing this substitution and integrating we find

v Y
@(z)=w+§g{(2R-§)£+Rzln (RRE)]+

2
+ 1R - 5 £ + 287 {(m —5Et+ R (R ; E” A24(1) . (36)

In cxpression (36) the coefficient A3(0) can be in the form of (16) or (18). When solving the inverse
problemm 1t is expedient to use formula (16), which lcads to a simpler equation for ¢. To solve the direct problem,
one should use (18). since (16) leads to a sccond-order differential cquation with respect to &,

Substituting (16) into (36) and satisfving the integral of heat balance (5), we obtain a first-order lincar
differcntial cquation for the boundary flux

G HPG=Q, o7
where the following notation is introduced
| 2 2 2 2 !
{

38
PN = - B T3 . (38)
by {2QRT = by by + 2RT(R” — b)) by

~4 b

- 2 2 2 2 3, 2
poL | byby — & (2R" = b)) ] [b) + 2R™ (b + R°by) | — 4b)E = 8aybybs|

Q= ; — ; 39
Rby {(2R™ = b)) by + 2R7(R” = b)) b,
R—¢E\?
by=t(QRQR~&); by=1In ( R j P by =E (R=8; by=E (R=-&. (40)
Integrating Eq. (37), we find
' (1 ; it )
g =y +fQ(’z) cxp [f P er dr| cxp ——f/’ (r)er . (41)
Q 0 0

Formula (41) give a complete solution of the above-formulated inverse problem of heat conduction.

It should be noted that an approximate solution of the inverse problem obtained from (9) with allowance
for two coefficicnts Ay (1) and A3 does not require the assignment of the initial value of the flux gg = ¢(0). The
unknown boundary flux in this approximation is fullv determined by the law of solidification front motion. In
particular, we find from (23

qg = p,LE (0). (42)

With a more strict solution of this problem for an unknown flux ¢() we obtain first-order differential Eq.
(37), 10 solve which one should assign gg = ¢(0). In accordance with the conditions of the problem the density of

the boundary heat flux ¢g should be determined from the value of the velocity of solidification front motion at ¢ =
0.

This initial condition can be taken in the form

Pl (0), if £ (0) < e,

(43)
A=const, if & (0)= o,

go =
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Now we consider the direct problem within the framework of a more-rigorous mode! and introduce an
equation for determination of the solidification front motion in time. For this purpose, differentiating (6) and
allowing for (2), we find

arTy (r, 1)

' R .
e rTy(r oty dr= | Ty (R = &) + Rf—a —SE—dr| & (44)

| =

d
a'tR€

Substitution of (44) into the integral of heat balance (§) leads to the following differential equation

R L R orT, ) )
—— = |—(R-&~ [ —gdr|i (49)
(zpz Ca R-¢& S
or
R 1)I'T-;
— (R =& = [ gt dr| di
, 2 R-x 0 (40)
1= P2 .
dr = R 4
whosc integration viclds
R ()I'Tz
— (R ~s) — J ——=dr| ds
. D] R—s N (47\)
CapP2 -
{ = f — (/C
R R-:& q

The integral expression (47) is a solution of the direct problem of cylindrical ingot solidification undcr
boundary conditions of the secod kind.

In {3 ] an approximate solution of the indicated problem of cylindrical ingot solidification under boundary
conditions of the first kind is obtained. It is easy to show that this solution follows from (47) as a particular case,
if in (47) a flux ¢(1 is assigned that ensures constancy of the temperature at the boundary r = R. This flux is
found from (17), in which it should be assumed that r = R and TH(R, 1 = Ts.

Completing the consideration of a more-rigorous solution in which the first three terms in expansion (8)
are used, one should note the error of this model will be O(Fo™ %),

NOTATION

f, time; r, spatial coordinate; To(r, ), temperature of solid phasc: a» = Ay cyp3, thermal diffusivity;
P2, 2, Az, density, heat capacity, and thermal conductivity of solid phase; Ty, temperature of solidification; Z,
latent heat of solidification; R, radius of cvlindrical ingot; 6«1, average temperature of solid phase; ¢, density
of boundary heat flux; r = £(0), equation of phasc interface; &'(1), velocity of solidification front motion; K, constant
of solidification; —Ei(—2z), integro-exponential fucntion; «a, coefficient of heat transfer.
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