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S O L U T I O N  O F  I N V E R S E  P R O B L E M  O F  

S O L I D I F I C A T I O N  O F  A C Y L I N D R I C A L  I N G O T  

I~. S. Zal'tsman and A. A. Kobyshev UDC 536.24 

An inverse problem of heat conduction that tnvolves determination of the density of boundary heat flux 
providing a prescribed veloctty of solidification front motion is solved by an integral method. 

A Mathemat ica l  Model of Cylindrical  Ingot Solidification. The solidification of a cyl indrical  ingot, a s iagram 

of which is given in Fig. 1, is ana lyzed  in a one-d imens ional  formulation.  It is assumed that at the initial instant  

the ent ire  cyl indrical  region is in a liquid state at the melting point Tph and during solidification a liquid phase is 

main ta ined  at this t empera ture  T l ( r ,  t) = Tph.  An unknown t ime-variable  heat flux with a densi ty  q(tl thai provides 

the prescr ibed velocity ~'( t)  of motion of the phase interface r = ~{t) inside the ingot is removed through the 

boundary  surface r = R. The  thermophysica l  propert ies  of the solid phase of the ingot arc assumed to be constant .  

Under  the condi t ions  ment ioned,  the t empera ture  field in a cyl indrical  laver of solidif ied mater ia l  is 

descr ibed  by the equation of nons ta t ionary  heat conduction 

,IT-, a2 0 ( OT2t 
- r R - S ( t )  <_r<_ R ,  3 , ( 0 ) = 0  (1) 

0t r 0 r  . ~)r J ' 

with the bounda ry  condi t ions 

T 2 ( R  - _~, t) = T p h ,  t > 0 ;  (2 )  

0T2 = - p2L,~ ' (t) , t > 0 ; 
22 dr r=R-~. 

(3) 

aT2[ (4) 
' ~ 2 ~  r=R=--  q ( t ) '  t > O .  

Analys is  of regorous mathemat ical  model (1)-(4) is difficult, due to its nonl inear i ty .  Moreover,  a strict 

solution in the cases when it can be obta ined  in the form of an infinite series is unsui table  for s tudy ing  the 

cons idered  physical  process. By virtue of this we use an integral  method [1] which allows us to find in closed 

ana ly t ica l  form a solut ion of (1)-(4)  that is approximate  but sa t is factory  from an engineer ing point of view. 

Averaging Eq. (1) within the limits from r = R - ~(t) to r = R and allowing for condit ions (2)-{4),  we obtain the 

following integral  of heat  balance 

O = T p h +  L ( R - ~ ) ~  - c ~  q '  (5) 

where 

R 
(9 (t) = f rT 2 (r, t) dr .  ( 6 )  

R-~ 
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Fig. 1. Diagram of cylindrical ingot for internal problem of solidification. 

In solving heat-conduction problems by the integral method one must assign a temperature profile. In [1 l 

the questiol: cf an expedient choice 3f a temperature profile in solving problems of heat conduction in different 

regions. In particular, it is shown thal in a region with cylindrical symmetry  it has the form T2(r , I) = Pn(r) In (r), 

where Pn(r) is a polynomial in r with coefficients dependent  on t. In just this way the temperature profile is 

presented in [2 ], thus leading to a solution containing a singularity at ~(t) = R. On the other hand,  it is easily seen 

that the following function satisfies Eq. (1) 

r 2 ( r , t i ; . t + B  - E i  - ~  (7) 

where A and B are arbi t rary constants;  

- Ei ( -  z) = e---  dr = r  - C - In z + ( - 1 )  n+| n Z!n ; (8) 
z n=l 

C = 0.57721566... is the Euler constant.  

It follows from (7) that if we restrict ourselves to the first n terms of expansion (8), we obtain an 

approximate solution of Eq. (1} in the form T2(r, t) = P,~(r 2) + C In r 2, where Pn(r 2) is a polynomial in r 2 with 

coefficients dependent  on t. In presenting the temperature profile in such a form, we require that the unknown 

solution satisfy the averaged equation, i.e., the integral of heat balance (1), rather than heat-conduction equation 

(1). Then  the initial heat-conduction equation will be satisfied on the average. 

Thus,  we present the temperature profile in the form 

T 2 (r, t) = ,.~t l (t) + "~2 (t) r 2 + A 3 (t) In r 2 . (9) 

To find functions Ai(t) it is necessary to asign three boundary conditions. In the inverse problem considered here 

boundary_ conditions (2)-(4) serve as these conditions, and the integral of heat balance (5) is used to obtain a 

f i r s t -order  different ial  equation with respect to q{t). In the case of the direct problem of cy l indr ica l  ingot 

solidification under  the effect of the prescribed heat flux q{t) condition {3) should be replaced by another  one not 

involving ~(t) since the coefficients Ai(t) will contain ~' and the integral of heat balance (5) ,e,,, while there is only 

one initial condition for ~(t): ~(0) = 0. In [2] this condition is obtained by integrating (2) with respect to t: 

OT 2 d~ OT 2 (10) 
Or dt + ~ - ~  = 0 at r = R - .~ 

and el iminat ing s e' from (3) by (10): 
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Or ) = - ~ at at  r = R - ~ .  (1 1) 

El imina t ing  f ina l ly  O T 2 / O t  from 11) by Eq. (1), wc have 

= c 2 r ,)r r - - ~ r ]  at r = R - ~ : .  (12) 

Express ion  (12) is a th i rd  necessary,  condi t ion ,  which is used ins tead  by (3). 

So lu t ion  and  A n a l y s i s  of  Resul ts .  Us ing  condi t ions  (2) and (4) we find the coeff ic ients  ,,1~ it) and  A3(I):  

R q  2 R 2 ~ 2 ~. 2 I (13) A 1 (t) = Tph + ~ 2  In (R  - ~) + [ In (R - . . ; )  - (R - ~) ..12(t) ; 

R q  R2A2( t ) ,  (14) .t 3 (t) - ~.~ 

and the temperature profile 

T 2 (r, t) = Tph ~- ~ In + R 2 In + - (R - ~ ~ A 2 It) (15)  

T h e  coeff ic ient  A2(,') can be found by two ways: from condi t ion  (37 when solving the inverse p rob lem and  from 

condi t ion  (12) w h e n  solving both the direct  and inverse  problems.  

F rom cond i t ion  (3) we find 

p 2 C ( R - ~ ) r  - R q  

A 2 (t) = 2fl 2 (2R - ~) 
(10) 

which  leads  to a t e m p e r a t u r e  prof i le  of the form 

I,o2L ( R  - ~) ~' - Rq]  [r 2 - (R - ~ ) l  
. + T-~ (r, t) = Tph + 22 2 (2R - ~) S 

R ( R  - ~) [RR2L~ - (R  - ~) q ]  ( ~ )  (17 )  
+ ~ 2  (2R - ~) .~ In . 

T h e  e m p l o y m e n t  of cond i t ion  (12) gives 

A 2 (t) = - 
z I + z 2 + (R - ~) ,,/,t2L (2 :  l + -'2) 

z 3 

(18) 

where  

. ~. 2 ~)2 ~2 
z I = R c 2 q  (2R - ~) ,; " ":2 = '12 L (R - ~;) ; z 3 = 222c 2 (2R - ~; ~ . (19) 

Subs t i tu t ing  (18) in to  (15),  we ob t a in  an exp re s s ion  for the t e m p e r a t u r e  profi le that  is su i tab le  for so lv ing  d i rec t  

and  inverse  p r o b l e m s  of cy l ind r i ca l  ingot  sol id i f ica t ion.  

It shou ld  be no ted  that  the  choice  of a t e m p e r a t u r e  profi le in the form of (9) leads  to e x p r e s s i o n  (15),  

whe re  A2(t) is found  f rom (16) or  (18),  which in cont ras t  to [31 has no s ingu la r i ty  at ~(t) = R. Ac tua l ly ,  w h e n  

~(t) -* R,  it fol lows f rom (15) that  t e m p e r a t u r e  d i s t r ibu t ion  in a sol id i f ied  ingot will have the form 
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q ( t )  r 2 0 < r < R (20) 
T 2 (r, t) = Tph - 222R  . . . .  

Two app rox ima te  solut ions  of both the direct and  inverse  p rob lems  of heat  conduc t ion  are  sugges ted  in the 

paper.  

The  solut ion at A2(t) = 0, as follows from (9), cor responds  to a s implif ied model  when  in e x p a n s i o n  (8) 

the two first te rms are  used: - E i ( - z )  = - C  - In z. 

It follws from (16) that A2(t) = 0, if 

p 2  L {R - ~} ~ - Rcl = O.  (21) 

In teg ra t ing  (21) :it ~(0) = 0 we obta in  a relat ion for de t e rmina t ion  of thc sol idif icat ion process 

- - -  q { 7 )  . 
C { t )  = R - 1)2 L {} ! 

(22) 

On the o ther  hand ,  it] lhc ciisc of the invcrsc problem, [:2% {21) is used to dcterm~nc Ihc u n k n o w n  flow 

t:, ,L  . { 23) v { n  = ~ -  (R - ~),~ . 

As par t icular  cases of the solut ion of the simplified model  suggested  in the paper  app rox ima te  so lu t ions  of 

the direct  problem of cyl indr ica l  ingot solidif ication ihal :ire known from l i lcra ture ,  ure ob t a ined  u n d e r  b o u n d a r y  

cond i t ions  of ihe first and  third kinds.  

From {15) at ..12(t ) - 0 we obta in  

T 2( r ,  1 ) =  Tph + nq  [R-~[._72_) 2 
9.?.22 

(24) 

Hence  it follows that  to m a i n t a i n  a cons tan t  t empera ture  T2(R, t) = T s on the surface r = R the flux q ( t )  should  be 

equal  to 

q (n = 

~2 (Ts - Tph) 

l n R - S  
R 

(25) 

Subs t i tu t ing  this value of q(t)  into (21), we have 

r, eL {R - ~) U 
't"2 (Ts - Tph) = 0 

lnE-~ 
R 

(26) 

o r  

p2  L R - ~ ('27) 
d r -  , {R - ~) ln U~ 

A2 (Ts - Tph) ~ - -  " 

In teg ra t ing  (27) at se(0) = 0, wc find 

)~2 (Tph -- Ts) 

where  rf = R - e 2 "  

rf rf (28) 
1 - + - - I n  

, 2R 2 ' 

Fo rmula  (28) coincides  with the known Leibenson  solut ion ob ta ined  by a n o t h e r  me thod  u n d e r  b o u n d a r y  

cond i t ions  of the first k ind [4 ]. 
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The solution of Seban and  London for boundary  condit ions of the third kind [5 1 is also obtained from the 

simplified model. Actually, so that the condition 

J'2 0 T 2  = 
a--Ti t= R . IT 2 (R, 0 - rm 1, 

is satisfied at the boundary ,  one should assign the flux q(t) in the form 

cr ( T p h  - Tin) (29) 
q ( t ) =  aR R - ~ ,  ' 

Substi tut ion of (29) into (21) leads to the following differential equation for the dependence of the phase interface 

motion on lime 

,o21_ 1 - ~ In ( R  - ~)  qe = e r r  ( T p h  -- Tin)  , 

o r  

P2----L- I - In ( R  - ,~) d e  
d t  = czR (Tpt~ - Tin) ~ 

Integrating ~31) at ,~(0) = 0, wc obtain 

z#2R" rf rf t =  + 1 - + - - r  . (32) 
2 2 ( T p h  -- Tm)  2 a R  2 R  ~ 

Formulas (22), (28), and (32) allow one to determine lime tfin of the completion of the process of round 

ingot solidification at ~(t) = R. From (22), in particular, we have boundary  condit ions of the second kind : 

1. If 

- - K , ( 3 3 )  

2R 

then ~ = K~/7. This parabolic relationship between the solidified layer thickness and time is shown as the law of 

the square root and is widely employed in studies of the process of ingot solification 16 1. The process of solidification 

is completed at I f  = R2/K 2. 
2. If qtt) = const, then 

~ ( t ) = R _ V f ( R  2 P2 L2Rq t ) (34) 

and the solidification process stops at 

Rp2L (35) 
tf - 2q 

The accuracy of the solution of the approximate model can be estimated from the condit ion of using the 

first two terms in expans ion  (8): - E i ( - z )  = - C -  Inz.  Since {8) is an a l t e rna t ing  series, the error  of this 

subst i tut ion does not exceed z = r2/4a2 t = Fo - I .  Consequent ly,  the error of the simplified model will be of the 
-1  order of Fo 
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We consider a more strict solution of the problem that is obtained using the first three terms in expansion 

(8): - E i ( - z )  = - C  - In z + z, substituting (15) and (6) and allowing for the three coefficients Ai(t) (i = 1, 2, 3). 

Performing this substitution and integrating we find 

O (t) = T p h - 2 ~ ( 2 R  - ~) ~ Rq R2 + ~ (2R - s~)~ + In + 

+ ( 2 R - ~ ) 2 s ~ 2  + 2R 2 ( 2 R - ~ ) ~  + R 2In  4 

In exp re s s ion  (36) the coeff ic ient  A2(t) can be in the form of (10) or (18). When  solving the inverse  

p r o b l e m m  tt is e x p e d i e n t  to use formula  {16), which leads  to a s imple r  equa t ion  for q. To solve the d i rec t  p rob lem,  

one shou ld  use (18),  s ince (16) leads  to a s e c o n d - o r d e r  d i f fe ren t ia l  equa t ion  with respect  to ~. 

Subs t i t u t ing  (16) into (36) and sa t i s fy ing  the in tegra l  of heat  ba lance  {5), we obta in  a f i r s t - o r d e r  l inear  

d i f f e r e n t i a l  e q u a t i o n  fo r  the b o u n d a r y  f l ux  

,4 + P ( r )  q = Q ( t ) ,  {37) 

where  the fol lowing nota t ion  is i n t roduced  

2 4aeb ~ + b 3 Ibl  + 2R 2 (b I + R~b~}] ' 
I '  (~) = - - , (38) 

/'l l ( 2 R 2 -  / h ) b l  + 2 R 2 ( R 2 -  /~1)/721 

2 } -, 2 } 

Q(t )  = p2L [bib4 - ~' ( 2 R 2 -  b l ) l  [bl" + 2R 2 ( b  I + R~b2) l - 4b~' - 8a2b~b3. ; (39) 

Rb 1 I(2R 2 - hi)  bl + 2R 2 (R 2 - hi)  b2 ] 

b 1 = ~ ( ? R - , ~ )  b 2 = In ; b 3 = ~' ( R -  ~) ; b 4 = ~ " ( R -  ~).  (40) 

In t eg ra t ing  Eq. (37),  we find 

[ [i i ]L> i q ( t )  = qo + f ( 2 ( r ) e x p  P(r) dr dr exp  - P ( r )  dr  . (41)  
o o 

Formula  (41) give a comple te  so lu t ion  of the a b o v e - f o r m u l a t e d  inverse  problem of heat  conduc t ion .  

It shou ld  be noted  that  an a p p r o x i m a t e  so lu t ion  of the inverse  problem o b t a i n e d  from (9) with a l lowance  

for two coeff ic ients  A] (t) and  A3(t) does  not requi re  the a s s i g n m e n t  of the init ial  value of the f lux q0 = q(O). The  

unknown b o u n d a r y  flux ira this a p p r o x i m a t i o n  is fully d e t e r m i n e d  bv the law of so l id i f ica t ion  f ront  motion.  In 

par t i cu la r ,  we find from (231 

q(-) = P2L? ~ (0) . (42)  

With a more s tr ict  solut ion of this p roblem for an unknown flux q(t) we obta in  f i r s t - o r d e r  d i f f e ren t i a l  Eq. 

(37),  to solve which one  should  ass ign q0 = q(O). In acco rdance  with the cond i t ions  of the p rob lem the dens i t y  of 

the b o u n d a r y  heat  flux qo shou ld  be d e t e r m i n e d  from the value of the veloci ty of so l id i f ica t ion  f ront  mot ion  at  t = 

0. 

Th is  ini t ial  cond i t ion  can be taken  in the form 

Ip2/_,.~ ' ( 0 ) ,  if ~ (0) < ~ ; 

q0 = [A = c o n s t ,  if ~- '(0) = oo. 
(43) 

520 



Now we consider the direct problem within the framework of a more-rigorous model and introduce an 

equation for determinat ion of the solidification front motion in time. For this purpose, differentiating (6) and 

allowing for (2), we find 

, d R [ R Orr2( r ,  t) 1 
O = -'~ f rT 2 (r, t) dr = Tph (R  - ~) + f - 0~" dr 

L J R - {  R-g 
~' (44) 

Substitution of (44) into the integral of heat balance (5) leads to the following differential equation 

R OrT2 ] . R L (R ~) f ~ d r  
c2,o 2 q c-, R-~ 

(45) 

o r  

c:~o2 
d ' [  = . . . . . . . .  

R 

L R drT2 ] 
~, ~R-~ , I -  f .-7- J~ 

(40) 

whose integration yields 

[~'2 R OfT2 } 
L ( R -  s ) -  f h.v dr dx 

R-s (47) 
c ~ 2  '~ 

t - _ d~ , 
R R-~ q 

The integral expression (47) is a solution of the direct problem of cylindrical ingot solidification under 

boundary  conditions of the secod kind. 

In [3 1 an approximate solution of the indicated problem of cylindrical ingot solidification under  boundary  

conditions of the first kind is obtained. It is easy to show that this solution follows from (47) as a particular case, 

if in (47) a flux q(t) is assigned that ensures constancy of the temperature at the boundary, r = R. This flux is 

found from (17), in which it should be assumed that r = R and T2(R, t) = T s. 
Completing the consideration of a more-rigorous solution in which the first three terms in expansion (8) 

are used, one should note the error of this model will be O(Fo-2) .  

N O T A T I O N  

t, time; r, spatial coordinate;  T2(r, t), temperature of solid phase; a2 = /1.2/c~)2, thermal diffusivity; 

P2, c2,.a2, density,  heat capacity, and Ihermal conductivity of solid phase; Tim, temperature of solidification; L, 

latent heat of solidification; R, radius of cylindrical ingot; O~t), average temperature of solid phase; q(t), density 

of boundary  heat flux; r =~{t), equation of phase interface; ,~'(t), velocity of solidification front mo t ion  K, constant 

of solidification; - E i ( - z ) ,  integro-exponential  fucntion; a,  coefficient of heat transfer. 
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